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Self-consistent molecular field theory for packing in classical liquids
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Building on a quasichemical formulation of solution theory, this paper proposes a self-consistent molecular
field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess
chemical potential of the hard sphere fluid. Results are given for the self-consistent molecular fields obtained,
and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical
potential predicted is nearly as accurate as the most accurate prior theories, specifically the scaled particle
(Percus-Yevick compressibilitytheory. A compact formula is obtained to throw light on the variation of the
chemical potential with the radius of a distinguished hard sphere solute in general solvents. It is argued that the
present approach is particularly simple, permits a natural description of possibilities for multiphasic behavior
of the solution, and should provide a basis for a molecular-scale description of more complex solutions.
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I. INTRODUCTION

Bu*=In N

1+ 2 Ky(R)p"

The disordered packing of molecules at liquid densities is m=t
a primary and difficult problem in the theory of liquifis,2].  for a hard sphere solute in a general solvent; heré is
This problem is typically addressed first by consideration ofk;T, «®*is the interaction contribution to the chemical po-
model intermolecular interactions of hard-core type, interactential, andR=d, the radius of an observation sphere, is
tions that rigidly exclude molecular overlap. For those sys-equal to the hard sphere distance of closest appri@&;Ra5.
tems, a quantity of primary interest is then Boltzmann'sThe K,(R) are well defined equilibrium ratios of concentra-
available spacg3] from which follows the thermodynamic tions of hard spheren complexes with that observation
excess chemical potential discussed here. Sophisticated thegphere. The quantitiek (R) describe occupancy transfor-
ries, even if esoteric, are availaljié—7] for the equation of ~mations fully involving the solution neighborhood of the ob-
state of the hard sphere fluid. In conjunction with simulationservation volume. Except in the limit of low density, these
results, adaptations of those theories provide empirically excoefficients are known only approximately. Therefore, physi-
act, closed-form results for the hard sphere sysi@mRe- cally_motivateq e_lpproximat_ions are required to proceed to
cent theoretical activity9,10] on the hard sphere fluid has SPecific quantitative predictions. S
emphasized that physical clarity is an important quality of OUr Previous study of this problerf26] identified a
theories that might be transplanted to describe more realistiMitive quasichemical approximation in which
solution models. The physical content of available models of n n
packipg.of more reglistically shaped moleculgs is conceptu- K, (R)~ g_lf dry--- f dfnexr{ - 2 Bu(rij)
ally similar to theories of the hard sphere fluid, but the re- n:Jo v i>j=1
sultant theories are naturally more complicated than for harg|ere .
spheres; Refd.11-24,9 give examples of that ongoing ac-
tivity.

Recent developments of a quasichemical approach to t

. (2

47R33 is the volume of the observation sphere,
u(rj;) is the interaction between moleculieandj (the hard
sphere interaction in the present casnd{ is a Lagrange

. ultiplier used to achieve consistency between the known
theory of molecular solution®5] have brought a new set of bulk densityp and the average density in the observation

concepts to bear on these problef26]; these developments ;e Because of the explicit factorsefn Eq. (1), £ will
suggest theories with clear physical content and possibilities roach the thermodvnamic excess acti \gityeﬁf‘ex when

for physically natural improvement. This paper pursues thes plg macroscopically I;/rge The integrals of E‘Cﬂ) a}e fow-
developments further, proposing and testing a self-consiste%ody integrals that can be éstimated by Monte Carlo methods
moIep_uIar fielq theory for packing.. More important than thei[26]. A natural extension of this idea is to approximate
specific packing problem considered here, these sel K,(R) on the basis ofi-molecule configurational integrals

consistent mqlecula}r field ideas will be (;ar'ried forward to 4t give the low-density limiting quantity, but with inclusion
develop quasichemical treatments of realistic soluti®. of a molecular fieldBescHr) as

£ .
Il. THEORY Kn(R)%vadrl'"Jvdrnexi{_izl BescHri)
For economy of the presentation, we specifically discuss n
the one-component hard sphere fluid. The quasichemical _ u(r) =K O(R: _ 3
theory for that system is built upon the theorg26,25 i>j2:1 pulry) n (RiBesce) @
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FIG. 2. Example dependence of the density profile on scaled
molecular field\ Boscr); pd®=0.8.

respect to the possible occupancies predicts the observed
density. The consistency sought is then uniformity of the
density,

SINKQ(R; Boscp

] i T P oD
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g"’ 64 /‘ for r inside the observation volume. Here
4 | L
1 Kn(R)p"

2] /// I Po(R)= ©)
| ———— | 1+ 2 Kp(R)p™
0+ — _”_I'—’FII’ m=1
0 0.2 0.4 0.6 0.8 1
rld are the probabilities of observimgsolvent centers within the

observation voluméwith Ko=1), and in Eq.(5) we have

. . . _ . noted that, for hard-core solutes, the interaction contribution
d-diameter hard spheres in a spherical observation volume of radm[% the chemical potential iBu®=—Inp, [26,25; see
- 0 3 3

d. r/d=0 is the center of the observation volume, ahd= 1 is the Eq. (1)

surface. The curves on the bottom panel correspond, from bottom to E | f th its followina f th id
top, to reduced densitie,sd3=0.1, ... 0.9, in increments of 0.1. Xamp e_s 0 € results tollowing from . ese laeas are
shown in Figs. 1-5. These results were obtained from a two-

The upper panel depici8escr for pd®=0.9, on a plane through . i -
the center of the observation sphere. step iterative procedure from a starting gu@assc(r) =0

FIG. 1. (Color) The self-consistent molecular fieRlpsc((r) for

16

This molecular fieldB¢sc((r) can be viewed as describing
the effect of the exterior solution on solvent molecules
within the observation volume. Note particularly that we will 121 i
adopt the convention that the molecular figgdscHr) be b
zero at the center of the observation volume. This convention 0 4
resolves spatially uniform, additive contributions to N °
Besc(r) that would otherwise be ambiguous, and with this 0 °
convention the Lagrange multipliérmay still be viewed as 4 70 r
the excess activity in the large limit. The molecular field

BescHr), together with the Lagrange multiplier, may be 0
made consistent with the information that the prescribed den- 0.3 06 0.9
sity of the liquid is uniform within the observation volume.
The density profile for the-molecule case i§27]

FIG. 3. Excess chemical potential of the hard sphere fluid as a
InK©O(R: function of density. The open and filled circles correspond to the
_ SInKy (R Besce) predictions of the primitive quasichemical theory and the present
pn(r)= (4) . : . .
OBoscr) self-consistent molecular field theory, respectively. The solid and
dashed lines are the scaled partigfercus-Yevick compressibility
inside the observation volume. Averaging these profiles withtheory and the Carnahan-Starling equation of state, respectively.
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10° few-body simulations to evaluate the work associated with
ey i turning on the molecular field using thermodynamic integra-
tion
107 L
102 L
. K (R Besce) s
2 n ’ SCF
10 L —————=¢eX —f > Boscer) ) di|,
KPR 0) o |51 P
1 I ®
10 >
107 where\ is a coupling parameter, ad- - ), indicates aver-

0 1 2 3 4 5 6 71 8 . A ! .
aging over configurations generated under the influence of

the molecular field scaled asBosc(r). Using these recal-

FIG. 4. Distributionsp, with R=d for densities ofpd®*=0.35 - jated KO(R; Bosc), we generated a new set @f,,
(filled circles and 0.8 (open circleg The dashed lines are the tested for convergence, and so on. Thjsdistribution was
primitive quasichemical theory of Ref26], and the solid lines found to converge to less than RgIl of the chemical poten-
correspond o the present S.C'.:.theory' Note t.he mabkeakaway tial within two steps even at the highest densities considered.
gf ]Ehe n[;% p%']m from the prt'rr]n't“r:? En”gfj'cr'efnl'ﬁal Cu(;\./et’ .gbierved We attribute the observed convergence to the fact that the

erore . e errors on e ni side O ese distributions . . . . . .
might reflect the fact that the presgnt SCF theory does not explicitlg‘ztartIng point, the primitive _quaS|chem|caI theor_y, IS acc“fa‘e
treat pair correlations. These correlations enter only through th or the probable occupancies. The molecular fields tha?'”ed
integralsk O(R: Bescp). using this method were found to converge stably with little
" difficulty.

Figure 1 shows the self-consistent molecular fields ob-
tained using the procedure described above up to fluid den-
§ities of pd®=0.9, just below the hard sphere freezing tran-

ition. BescHr) is a monotonically increasing function of
Iradial position from the center of the stencil volume to its
boundary. This reflects the fact that in the absence of the
molecular field the hard sphere particles tend to build up on
the surface of the stencil volume to minimize their interac-
p(r) ) tions with the other particlegFig. 2). The molecular field

p | makes the boundary repulsive, depletes the surface density,

and homogenizes the density within the volume. The magni-

wheref is a constant less than 1 that ensures stable conveEjL-‘ednesig}c this repulsive field increases with increasing fluid

gence of the molecular field; a value of 0.2 was found to Th dicted hard soh hemical ial f
work here. Convergence to less than 1% variation in the field e predicted hard sphere chemical potentials as a func-

is obtained in 20 iterations of this procedure, typically. Usingtio" Of density using the primitive and self-consistent mo-

the field obtained above, we then updated the occupanciei§cular field quasichemical theories are compared to the
reevaluating theKﬁo)(R;,Bgoscp) by performing additional chemical potential from the Carnahan-Starling equation in

Fig. 3. The primitive theory works well up tpd3~0.35,
roughly the critical density for Ar and the density region
suggested to mark qualitative packing changes in the hard
sphere fluid[28]; at higher densities the primitive qua-
sichemical theory systematically underpredicts the hard
0 sphere chemical potential. The present self-consistent mo-
. o lecular field theory significantly improves the agreement
1'5 Che 3 with the Carnahan-Starling equation over the entire density
] ° range. Above densities gfd®~0.6, the self-consistent mo-
° lecular field theory begins to overpredict the hard sphere
° chemical potential, though the absolute value of the error is
0.1 ———rry S — in marked improvement over the primitive theory. Figure 4
01 ! n 10 shows that the most important deficiencies of the primitive
np, : . !
quasichemical theory are corrected by the self-consistent mo-
FIG. 5. Comparison of I (with ¢ being the Lagrange multi- lecular field theory. Note that the self-consistent molecular

plier or excess activityagainst computed excess chemical poten-field theory captures the breakaway at high density ghln
tial, Bu®*=—In p,, demonstrating the thermodynamic consistencyfrom the primitive quasichemical prediction. The self-
of these quasichemical theories. The open circles are the primitiveéonsistent molecular field theory is in close agreement with
quasichemical theor§Eq. (2)], and the filled circles are the present the scaled particléor Percus-Yevick compressibilittheory
self-consistent molecular field theory. for the chemical potential.

and the probabilitiesp,, of the primitive quasichemical
theory [26]. With the current approximate results, we per-
formed Monte Carlo calculations to estimate the densities fo
each occupancy, and on that basis the average density i
plied by the current field. We then updated the molecula
field according to

[Be(Nscelnew=[Be(Nsceloigt fIn

104 L

ng
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In addition to achieving a uniform density across the ob- Spm(T)
servation volume, the self-consistent molecular field also L,Z—<5pm(l’)5pm(l")> (12
nearly achieves thermodynamic consistency for the chemical oBe(r’)

potential. With the choice of an additive constant which
makesBesci(r) zero in the deepest interior of the observa-
tion volume, InZ should approach3u®* in the limit of a
largeR. BoscHr) describes an interaction between the inte-
rior and the exterior of the observation volume across the —5’)(” = "= '

- =(0p(r)Sp(r"))=x(r,r") (13
intervening boundary. Particularly in the present case of oBe(r")
short ranged interactions, we expect spatial variation of
Bescr) to be confined to a surface region. Though a stenand
cil volume of radiusR=d is evidently not large enough to
observe that bulk behavior @#escr) (Fig. 1), for thatR _5,3<p(r)=J x (e Sp(r)d3r . (14)
=d case Fig. 5 comparesInp, and In as determined by

the primitive and self-consistent molecular field quas'chem"Population averaging of the functional derivative Egj2)

ebeforecomposing Eq(14) is suggestive of the random phase

pr|m|_t|ve theory S|gn|f|f:antly underpredic{s, with the self- approximation concept of exploiting an average potential in
consistent molecular field theory {rand —In py agree nearly "\ response function. To use Etd), consider the den-

perfectly. At the highest densities, there is a slight disparity ;.. ., ) : ializati fth
between these two quantities, and the calculated values fsny changedp(r’) corresponding to dematerialization of the

In £ are in better agreement with the empirically knogn®* Uniform density in a thin shellR—ARR).
for the hard sphere fluid. aBe(r)

=R? f “Lr,rHd2Q’, 1
R p |r/|:R,X (r,r’) (19

follows from Eq. (4) for each occupancy. Performing the
population averaging at this stage, we write

I1l. VARIATION WITH CAVITY SIZE

where the latter integral is over solid angles covering the

surface of the ball. We introduce now{r,r’), the Ornstein-

. Zerlnike (OZ) direct correlation fl_Jnctio_n _defined by
47pR2G(R) = Bu ©) X (r,r’)=5(r—r’)/p(_r)—c(r,r’). Us!ng this in _Eqs(15)_

dR and(11), then performing the population averaging required
by Eq.(10), we finally obtain

is of special interest in the theory of the hard sphere fluid,

and of solubility more generally29,7,34. The right side G(R)zl—f c(r,r' =zR)pd3r (16)

here is the radius derivative of the excess chemical potential v

of an infinitely dilute hard sphere solute; the solvent charac- o o )

teristics are unchanged in evaluating this derivative and, ifVithin the present approximation. In the indicated integral

fact, much of the following considerations apply to morether’ coordinate is pinned to the sphere surface, andrthe

general solvents than the hard sphere fluid. As is well knowrtégration is over the interior of the sphere because of Eq.

[29], G(R) is the radial distribution of solvent centers at (11). The functionc(r,r’) is the OZ direct correlation func-

contact with the hard solute. In the present quasichemicd{on in the field B¢ including the self-consistent molecular

approximation, this derivative is expressed as field, i.e., for the case of a uniform density enclosed in a
sphere of radiu®k with no material outside.

It is obvious that Eq(16) gives the correct answer for the
47pR2G(R)~ Y, pr[dInK (R Bescp/dR]. (10)  case that the solvent atoms have no interaction with one
m another c(r,r')=0], and for the same reason this formula is
obviously correct in the limit of zero density. That limiting
To analyze the derivative required here, we consider that theesult gives the second virial coefficient theory fu®*. At
radiusR is defined in the first place by a bare fighapy that  the initial order in the density
is zero (0) inside the observation volume and outside.

The related quantity

Then the full field encountered with the integral K@) is c(r,r’)=exgd —Bu(r,r')]—=1+0(p). (17
= + —InZ. Th It ding t
,(é;p. (A’f(ipso BescrIné. The result now corresponding 10 ;.o \ation in the approximate E€16) leads to the correct

contribution of next order in the density f@(R), corre-
) sponding the third virial contribution t@u®*.
dinKm(RBescr) _ J p(T: B )(95"”“) ddr. Exact results are also available in the case that the obser-
dR pLETSCR R vation sphere is sufficiently smalR<d/2. Then po=1
(1) —47pR%3, and Be(r)=In(1—4mpR%3), within O<r<R
and spatially uniform there, so in the formulation above this
The radius derivativeiB¢(r)/dR of the full field can be would be reflected solely in the Lagrange multiplieDirect
described by a standard formal argument. The relation calculation gives  x(r,r')=pd(r—r")—p?, and
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x Yr,r")=p 18(r,r")+1/(1—-4mwpR33). Using these re- The present results address contributions essential to qua-
sults in Eq. (16) gives the known answerG(R)=1/(1  sichemical descriptions of solvation in more realistic cases,
—4mpR3/3). Tests of other current theories in this regimeas has been discussed on a conceptual basis re¢esily

have been given in Ref10]. For hard sphere solutes specifically, the present results pro-
vide a definite and organized basis for theoretical study of
IV. CONCLUDING DISCUSSION subsequent solvation phenomena. For example, consider in-

clusion of attractive interactions between solvent molecule

Quasichemical approaches with natural approximationgpheres, i.e., interactions secondary to the repulsive interac-
go a long way toward convertingxterior problems of mo-  tions. The simple estimate(r)~ — Bu(r) for distances not
lecular statistics intanterior problems. This may be advan- too small is consistent with Eq17). But whenu(r) at those
tageous for computation but is important and helpful in thedistances describes attractive interactions, @6) predicts
physical understanding of solutions. The physical content ofhat these attractive interactions reduce the magnitude of
the present self-consistent molecular field theory is simples(R). This is a behavior that has been much discussed over
and clear, and this theory is as nearly accurate as the mogécent years in the context of the theories of inert gas solu-
accurate prior theories, specifically the scaled particlaility in liquid water [26,32,25,30)
(Percus-Yevick compressibilitytheory, for the thermody- A related but distinct issue is how these packing questions
namics of the hard sphere fluid. The conclusion is that caregre affected by mu|tiphasic behavior of the solution, particu-
ful attention to the near neighborhood of a distinguished soltarly the possibility ofdrying [33—35 or preferential absorp-
ute in such a liquid, with a self-consistent molecular fieldtion [36] in biophysical aqueous applications. In such cases,
describing the influence of more distant regions, provides af s attractive to speculate that the self-consistent molecular
accurate description of packing in dense liquids. Though disfield B¢ r should reflect those multiphase possibilities just

tinct, the hydrostatic linear responstheory[10] leads to a  as it can in pedagogical treatments of nonmolecular models
similar conclusion that good theories of these phenomengf phase transitionf37].

can be extremely local.

The appearance of the Orstein-Zernike direct correlation
function in Eq.(16) is suggestive. The present approximate ACKNOWLEDGMENTS
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