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Self-consistent molecular field theory for packing in classical liquids

Lawrence R. Pratt and Henry S. Ashbaugh
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

~Received 12 May 2003; published 20 August 2003!

Building on a quasichemical formulation of solution theory, this paper proposes a self-consistent molecular
field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess
chemical potential of the hard sphere fluid. Results are given for the self-consistent molecular fields obtained,
and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical
potential predicted is nearly as accurate as the most accurate prior theories, specifically the scaled particle
~Percus-Yevick compressibility! theory. A compact formula is obtained to throw light on the variation of the
chemical potential with the radius of a distinguished hard sphere solute in general solvents. It is argued that the
present approach is particularly simple, permits a natural description of possibilities for multiphasic behavior
of the solution, and should provide a basis for a molecular-scale description of more complex solutions.
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I. INTRODUCTION

The disordered packing of molecules at liquid densitie
a primary and difficult problem in the theory of liquids@1,2#.
This problem is typically addressed first by consideration
model intermolecular interactions of hard-core type, inter
tions that rigidly exclude molecular overlap. For those s
tems, a quantity of primary interest is then Boltzman
available space@3# from which follows the thermodynamic
excess chemical potential discussed here. Sophisticated
ries, even if esoteric, are available@4–7# for the equation of
state of the hard sphere fluid. In conjunction with simulati
results, adaptations of those theories provide empirically
act, closed-form results for the hard sphere system@8#. Re-
cent theoretical activity@9,10# on the hard sphere fluid ha
emphasized that physical clarity is an important quality
theories that might be transplanted to describe more real
solution models. The physical content of available models
packing of more realistically shaped molecules is concep
ally similar to theories of the hard sphere fluid, but the
sultant theories are naturally more complicated than for h
spheres; Refs.@11–24,9# give examples of that ongoing ac
tivity.

Recent developments of a quasichemical approach to
theory of molecular solutions@25# have brought a new set o
concepts to bear on these problems@26#; these development
suggest theories with clear physical content and possibil
for physically natural improvement. This paper pursues th
developments further, proposing and testing a self-consis
molecular field theory for packing. More important than t
specific packing problem considered here, these s
consistent molecular field ideas will be carried forward
develop quasichemical treatments of realistic solutions@25#.

II. THEORY

For economy of the presentation, we specifically disc
the one-component hard sphere fluid. The quasichem
theory for that system is built upon the theorem@26,25#
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Km~R!rmG ~1!

for a hard sphere solute in a general solvent; hereb21 is
kBT, mex is the interaction contribution to the chemical p
tential, andR5d, the radius of an observation sphere,
equal to the hard sphere distance of closest approach@26,25#.
The Kn(R) are well defined equilibrium ratios of concentr
tions of hard spheren complexes with that observatio
sphere. The quantitiesKn(R) describe occupancy transfo
mations fully involving the solution neighborhood of the o
servation volume. Except in the limit of low density, the
coefficients are known only approximately. Therefore, phy
cally motivated approximations are required to proceed
specific quantitative predictions.

Our previous study of this problem@26# identified a
primitive quasichemical approximation in which

Kn~R!'
zn

n! Ev
dr1•••E

v
drnexpF2 (

i . j 51

n

bu~r i j !G . ~2!

Here v54pR3/3 is the volume of the observation spher
u(r i j ) is the interaction between moleculesi and j ~the hard
sphere interaction in the present case!, andz is a Lagrange
multiplier used to achieve consistency between the kno
bulk densityr and the average density in the observati
volume. Because of the explicit factors ofr in Eq. ~1!, z will
approach the thermodynamic excess activity,z;ebmex

, when
R is macroscopically large. The integrals of Eq.~2! are few-
body integrals that can be estimated by Monte Carlo meth
@26#. A natural extension of this idea is to approxima
Kn(R) on the basis ofn-molecule configurational integral
that give the low-density limiting quantity, but with inclusio
of a molecular fieldbwSCF(r) as

Kn~R!'
zn

n! Ev
dr1•••E

v
drnexpF2(

i 51

n

bwSCF~r i !

2 (
i . j 51

n

bu~r i j !G[Kn
(0)~R;bwSCF!. ~3!
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This molecular fieldbwSCF(r) can be viewed as describin
the effect of the exterior solution on solvent molecu
within the observation volume. Note particularly that we w
adopt the convention that the molecular fieldbwSCF(r) be
zero at the center of the observation volume. This conven
resolves spatially uniform, additive contributions
bwSCF(r) that would otherwise be ambiguous, and with th
convention the Lagrange multiplierz may still be viewed as
the excess activity in the largeR limit. The molecular field
bwSCF(r), together with the Lagrange multiplier, may b
made consistent with the information that the prescribed d
sity of the liquid is uniform within the observation volume
The density profile for then-molecule case is@27#

rn~r!52
d ln Kn

(0)~R;bwSCF!

dbwSCF~r!
~4!

inside the observation volume. Averaging these profiles w

FIG. 1. ~Color! The self-consistent molecular fieldbwSCF(r) for
d-diameter hard spheres in a spherical observation volume of ra
d. r /d50 is the center of the observation volume, andr /d51 is the
surface. The curves on the bottom panel correspond, from botto
top, to reduced densitiesrd350.1, . . . ,0.9, in increments of 0.1
The upper panel depictsbwSCF for rd350.9, on a plane through
the center of the observation sphere.
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respect to the possible occupancies predicts the obse
density. The consistency sought is then uniformity of t
density,

2(
m

pm

d ln Km
(0)~R;bwSCF!

dbwSCF~r!

52
d ln p0

dbwSCF~r!
5

dbmex

dbwSCF~r!
5r, ~5!

for r inside the observation volume. Here

pn~R!5
Kn~R!rn

11 (
m>1

Km~R!rm

~6!

are the probabilities of observingn solvent centers within the
observation volume~with K051), and in Eq.~5! we have
noted that, for hard-core solutes, the interaction contribut
to the chemical potential isbmex52 ln p0 @26,25#; see
Eq. ~1!.

Examples of the results following from these ideas a
shown in Figs. 1–5. These results were obtained from a t
step iterative procedure from a starting guessbwSCF(r)50

us

to

FIG. 2. Example dependence of the density profile on sca
molecular fieldlbwSCF(r); rd350.8.

FIG. 3. Excess chemical potential of the hard sphere fluid a
function of density. The open and filled circles correspond to
predictions of the primitive quasichemical theory and the pres
self-consistent molecular field theory, respectively. The solid a
dashed lines are the scaled particle~Percus-Yevick compressibility!
theory and the Carnahan-Starling equation of state, respective
5-2
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SELF-CONSISTENT MOLECULAR FIELD THEORY FOR . . . PHYSICAL REVIEW E68, 021505 ~2003!
and the probabilitiespn of the primitive quasichemica
theory @26#. With the current approximate results, we pe
formed Monte Carlo calculations to estimate the densities
each occupancy, and on that basis the average density
plied by the current field. We then updated the molecu
field according to

@bw~r!SCF#new5@bw~r!SCF#old1 f lnFr~r !

r G , ~7!

wheref is a constant less than 1 that ensures stable con
gence of the molecular field; a value of 0.2 was found
work here. Convergence to less than 1% variation in the fi
is obtained in 20 iterations of this procedure, typically. Usi
the field obtained above, we then updated the occupan
reevaluating theKn

(0)(R;bwSCF) by performing additional

FIG. 4. Distributionspn with R5d for densities ofrd350.35
~filled circles! and 0.8 ~open circles!. The dashed lines are th
primitive quasichemical theory of Ref.@26#, and the solid lines
correspond to the present SCF theory. Note the markedbreakaway
of then50 point from the primitive quasichemical curve, observ
before @26#. The errors on the highn side of these distributions
might reflect the fact that the present SCF theory does not expli
treat pair correlations. These correlations enter only through
integralsKn

(0)(R;bwSCF).

FIG. 5. Comparison of lnz ~with z being the Lagrange multi-
plier or excess activity! against computed excess chemical pote
tial, bmex52 ln p0, demonstrating the thermodynamic consisten
of these quasichemical theories. The open circles are the prim
quasichemical theory@Eq. ~2!#, and the filled circles are the prese
self-consistent molecular field theory.
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few-body simulations to evaluate the work associated w
turning on the molecular field using thermodynamic integ
tion

Kn
(0)~R;bwSCF!

Kn
(0)~R;0!

5expF2E
0

1K (
j 51

n

bwSCF~r j !L
l

dlG ,

~8!

wherel is a coupling parameter, and^•••&l indicates aver-
aging over configurations generated under the influence
the molecular field scaled aslbwSCF(r). Using these recal-
culated Kn

(0)(R;bwSCF), we generated a new set ofpn ,
tested for convergence, and so on. Thispn distribution was
found to converge to less than 0.1kBT of the chemical poten-
tial within two steps even at the highest densities conside
We attribute the observed convergence to the fact that
starting point, the primitive quasichemical theory, is accur
for the probable occupancies. The molecular fields obtai
using this method were found to converge stably with lit
difficulty.

Figure 1 shows the self-consistent molecular fields
tained using the procedure described above up to fluid d
sities ofrd350.9, just below the hard sphere freezing tra
sition. bwSCF(r) is a monotonically increasing function o
radial position from the center of the stencil volume to
boundary. This reflects the fact that in the absence of
molecular field the hard sphere particles tend to build up
the surface of the stencil volume to minimize their intera
tions with the other particles~Fig. 2!. The molecular field
makes the boundary repulsive, depletes the surface den
and homogenizes the density within the volume. The mag
tude of this repulsive field increases with increasing flu
density.

The predicted hard sphere chemical potentials as a fu
tion of density using the primitive and self-consistent m
lecular field quasichemical theories are compared to
chemical potential from the Carnahan-Starling equation
Fig. 3. The primitive theory works well up tord3'0.35,
roughly the critical density for Ar and the density regio
suggested to mark qualitative packing changes in the h
sphere fluid @28#; at higher densities the primitive qua
sichemical theory systematically underpredicts the h
sphere chemical potential. The present self-consistent
lecular field theory significantly improves the agreeme
with the Carnahan-Starling equation over the entire den
range. Above densities ofrd3'0.6, the self-consistent mo
lecular field theory begins to overpredict the hard sph
chemical potential, though the absolute value of the erro
in marked improvement over the primitive theory. Figure
shows that the most important deficiencies of the primit
quasichemical theory are corrected by the self-consistent
lecular field theory. Note that the self-consistent molecu
field theory captures the breakaway at high density of lnp0
from the primitive quasichemical prediction. The se
consistent molecular field theory is in close agreement w
the scaled particle~or Percus-Yevick compressibility! theory
for the chemical potential.
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L. R. PRATT AND H. S. ASHBAUGH PHYSICAL REVIEW E68, 021505 ~2003!
In addition to achieving a uniform density across the o
servation volume, the self-consistent molecular field a
nearly achieves thermodynamic consistency for the chem
potential. With the choice of an additive constant whi
makesbwSCF(r) zero in the deepest interior of the observ
tion volume, lnz should approachbmex in the limit of a
largeR. bwSCF(r) describes an interaction between the in
rior and the exterior of the observation volume across
intervening boundary. Particularly in the present case
short ranged interactions, we expect spatial variation
bwSCF(r) to be confined to a surface region. Though a st
cil volume of radiusR5d is evidently not large enough t
observe that bulk behavior ofbwSCF(r) ~Fig. 1!, for that R
5d case Fig. 5 compares2 ln p0 and lnz as determined by
the primitive and self-consistent molecular field quasiche
cal theories. While the excess activity evaluated within
primitive theory significantly underpredictsp0, with the self-
consistent molecular field theory lnz and2 ln p0 agree nearly
perfectly. At the highest densities, there is a slight dispa
between these two quantities, and the calculated values
ln z are in better agreement with the empirically knownbmex

for the hard sphere fluid.

III. VARIATION WITH CAVITY SIZE

The related quantity

4prR2G~R!5
dbmex

dR
~9!

is of special interest in the theory of the hard sphere flu
and of solubility more generally@29,7,30#. The right side
here is the radius derivative of the excess chemical pote
of an infinitely dilute hard sphere solute; the solvent char
teristics are unchanged in evaluating this derivative and
fact, much of the following considerations apply to mo
general solvents than the hard sphere fluid. As is well kno
@29#, G(R) is the radial distribution of solvent centers
contact with the hard solute. In the present quasichem
approximation, this derivative is expressed as

4prR2G~R!'(
m

pm@d ln Km~R;bwSCF!/dR#. ~10!

To analyze the derivative required here, we consider that
radiusR is defined in the first place by a bare fieldbw0 that
is zero ~0! inside the observation volume and̀ outside.
Then the full field encountered with the integral Eq.~3! is
bw5bw01bwSCF2 ln z. The result now corresponding t
Eq. ~4! is

d ln Km~R;bwSCF!

dR
52E

v
rm~r;bwSCF!

]bw~r!

]R
d3r .

~11!

The radius derivative]bw(r)/]R of the full field can be
described by a standard formal argument. The relation
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drm~r!

dbw~r8!
52^drm~r!drm~r8!& ~12!

follows from Eq. ~4! for each occupancy. Performing th
population averaging at this stage, we write

2
dr~r!

dbw~r8!
5^dr~r!dr~r8!&[x~r,r8! ~13!

and

2dbw~r!5E x21~r,r8!dr~r8!d3r 8. ~14!

Population averaging of the functional derivative Eq.~12!
beforecomposing Eq.~14! is suggestive of the random phas
approximation concept of exploiting an average potentia
a linear response function. To use Eq.~14!, consider the den-
sity changedr(r8) corresponding to dematerialization of th
uniform density in a thin shell (R2DR,R).

2
]bw~r!

]R
5R2rE

ur8u5R2

x21~r,r8!d2V8, ~15!

where the latter integral is over solid angles covering
surface of the ball. We introduce nowc(r,r8), the Ornstein-
Zernike ~OZ! direct correlation function defined b
x21(r,r8)5d(r2r8)/r(r)2c(r,r8). Using this in Eqs.~15!
and ~11!, then performing the population averaging requir
by Eq. ~10!, we finally obtain

G~R!512E
v
c~r,r85 ẑR!rd3r ~16!

within the present approximation. In the indicated integ
the r8 coordinate is pinned to the sphere surface, and thr
integration is over the interior of the sphere because of
~11!. The functionc(r,r8) is the OZ direct correlation func
tion in the fieldbw including the self-consistent molecula
field, i.e., for the case of a uniform density enclosed in
sphere of radiusR with no material outside.

It is obvious that Eq.~16! gives the correct answer for th
case that the solvent atoms have no interaction with
another@c(r,r8)50#, and for the same reason this formula
obviously correct in the limit of zero density. That limitin
result gives the second virial coefficient theory forbmex. At
the initial order in the density

c~r,r8!5exp@2bu~r,r8!#211O~r!. ~17!

This relation in the approximate Eq.~16! leads to the correc
contribution of next order in the density forG(R), corre-
sponding the third virial contribution tobmex.

Exact results are also available in the case that the ob
vation sphere is sufficiently small,R<d/2. Then p051
24prR3/3, and bw(r)5 ln(124prR3/3), within 0<r<R
and spatially uniform there, so in the formulation above t
would be reflected solely in the Lagrange multiplierz. Direct
calculation gives x(r,r8)5rd(r2r8)2r2, and
5-4
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SELF-CONSISTENT MOLECULAR FIELD THEORY FOR . . . PHYSICAL REVIEW E68, 021505 ~2003!
x21(r,r8)5r21d(r,r8)11/(124prR3/3). Using these re-
sults in Eq. ~16! gives the known answer,G(R)51/(1
24prR3/3). Tests of other current theories in this regim
have been given in Ref.@10#.

IV. CONCLUDING DISCUSSION

Quasichemical approaches with natural approximati
go a long way toward convertingexterior problems of mo-
lecular statistics intointerior problems. This may be advan
tageous for computation but is important and helpful in
physical understanding of solutions. The physical conten
the present self-consistent molecular field theory is sim
and clear, and this theory is as nearly accurate as the m
accurate prior theories, specifically the scaled part
~Percus-Yevick compressibility! theory, for the thermody-
namics of the hard sphere fluid. The conclusion is that ca
ful attention to the near neighborhood of a distinguished s
ute in such a liquid, with a self-consistent molecular fie
describing the influence of more distant regions, provides
accurate description of packing in dense liquids. Though
tinct, thehydrostatic linear responsetheory @10# leads to a
similar conclusion that good theories of these phenom
can be extremely local.

The appearance of the Orstein-Zernike direct correla
function in Eq.~16! is suggestive. The present approxima
theory is not founded upon a OZ-structured integral eq
tion, but the more general role of the OZ direct correlati
function is to answer what is the external field that induce
particular density change@31#. This is an issue that underlie
much of the equilibrium theory of classical fluids, and t
recent hydrostatic linear response theory@10# as well.
to
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The present results address contributions essential to
sichemical descriptions of solvation in more realistic cas
as has been discussed on a conceptual basis recently@25#.
For hard sphere solutes specifically, the present results
vide a definite and organized basis for theoretical study
subsequent solvation phenomena. For example, conside
clusion of attractive interactions between solvent molec
spheres, i.e., interactions secondary to the repulsive inte
tions. The simple estimatec(r );2bu(r ) for distances not
too small is consistent with Eq.~17!. But whenu(r ) at those
distances describes attractive interactions, Eq.~16! predicts
that these attractive interactions reduce the magnitude
G(R). This is a behavior that has been much discussed o
recent years in the context of the theories of inert gas s
bility in liquid water @26,32,25,30#.

A related but distinct issue is how these packing questi
are affected by multiphasic behavior of the solution, partic
larly the possibility ofdrying @33–35# or preferential absorp-
tion @36# in biophysical aqueous applications. In such cas
it is attractive to speculate that the self-consistent molec
field bwSCF should reflect those multiphase possibilities ju
as it can in pedagogical treatments of nonmolecular mod
of phase transitions@37#.
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